Distributed Energy Neural Network Integration System (DENNISTM) Quarterly Review

Orion Engineering Corporation

By:

Tom Regan and Herbert Sinnock

Madison, WI July 9, 2002

NREL Technical Monitor: Holly Thomas

How Can Distributed Generation Get Full-Value Pricing?

- Avoided cost and net metering models are not viable for providing the first cost recovery rates needed to make distributed resources economical for household and small commercial applications.
- A solution to economically integrate distributed resources onto grid is needed. This solution should capture the fullvalue of the distributed resource.
- Solution will need to be adaptable, knowing when to sell and when to store energy (if site has ability).
- Solution will also need capacity to aggregate small blocks of power production into blocks large enough to make utility contracts.

Distributed Energy Neural Network Integration System (DENNISTM)

- Distributed generation and storage systems need an adaptive mechanism that can predict the site specific energy generation capacity and power consumption.
- DENNISTM is optimization system that uses neural networks and fuzzy logic to determine where, when and which distributed generation resources are utilized.
- Solution predicts and meets demand of a particular user instead of curtailing that user's demand.
- Our system is now capable of optimizing to a single user or with application to a larger group of users coming in Year II. Year II and III expand this aspect of development to a "neighborhood controller".

Program Goals (Overall)

- Prototype, test and evaluate the system utilizing the facilities at the University of Massachusetts Lowell (UML) Center for Energy Conversion (CEC).
- Develop an economic model/analysis of the potential impact of our method for aggregating and managing distributed power.
- Deploy units to customer sites in two phases. First phase provides geographic dispersal during debugging and analysis. Second phase will be a beta product release.
- Establish industrial contacts and relationships to allow effective transfer of product into residential and business sectors.
- Inform and demonstrate to the electric power community the potential of a new business in generation communities.

Year One Program Tasks

- Task 1 Data Reduction and Analysis (Completed)
- Task 2 Power Electronics (Completed)
- Task 3 Fuel Cell Characterization and Integration (Completed)
- Task 4 Power Quality Study (Completed)
- Task 5 Pattern Database & Pattern Recognition (Completed)
- Task 6 Control Law Generator (Completed)
- Task 7 Preliminary Economic Analysis and Market

Assessment (Completed)

YEAR ONE GOALS – Make infrastructure investments, develop neural network systems, and validate savings potentials.

How Did the Proposed DENNIS™ System Work?

- A Neural Pattern Database monitors and learns load, weather, price and available power data streams.
- Incoming signals were compared with patterns stored in Neural Pattern Database to select appropriate operating conditions.
- Optimization algorithm selects control strategy for power storage, power export/import and generation dispatch.

Our year one experience found that this strategy was not the most effective method possible.

How Does the Latest Version of DENNISTM Work?

- Neural network performs real time decision making
- Linear programming-based Optimizer system creates training sets using past data
- Network is continually retrained with newer data

Task 5 – Pattern Database Development

- Tested ARTMAP topology with weather data from UML
- Achieved 80% correct prediction using 1 month of data for training and testing

Task 6 – Control Law Generator

- Developed system of hourly cost and constraint equations
- Developed algorithm to solve complete set of constraint equations over 24 hours through linear optimization and iteration
- Compared performance to default pricing and systems with charge control

Rainy Day with Standard Storage

Rainy Day with DENNIS

Comparison of DENNISTM System to Charge Controlled System

System	Case A – Sunny	Case B – Rainy	Total
Default - No Storage	\$1.3323	\$1.6092	\$2.9415
Storage - Charge Control	\$0.6837	\$1.4257	\$2.1094
Storage – Optimized	\$0.5969	\$0.9478	\$1.5447

Task 7 – Preliminary Economic Analysis and Market Assessment

- DENNISTM beats avoided cost by up to 135%
 - On average it provides a savings of 115% for a photovoltaic installation (compared to only 60% for net metering)
 - On average by 60% for hydrocarbon
 - based on a house using approximately 20 kWh and generating 18-28kWh per day with 4kWh of storage available
- DENNISTM utility revenue is **\$221** / customer-year

Year One Project Summary

At the end of Year One, the following activities were completed:

- Facilities upgrades at UMLCEC.
 - Fuel Cell logic modeled and characterized.
- Development of the neural network algorithms.
- Economic models demonstrating that DENNIS is a cost effective solution for distributed generation systems.
- Completing Year I sets the stage for field testing and debugging in Year II.
 - We are now moving away from our algorithm development to a hardware and code development program.

Option Year I Program

- During Option Year 1, OEC plans to advance DENNIS[™] from the design and prototype development achieved during the Base Year to installing and debugging the prototype system.
- This also marks the beginning of OEC's technology deployment and demonstration plan for the DENNISTM system.
 - We are currently working with industrial and government partners to construct additional distributed generation capacity on or near the UML campus.
 - This extensive distributed generation capacity will become a test and demonstration site for DENNISTM and similar systems from our industrial partners.

Option Year II Program Tasks

- Task 8 Control Site Development and Monitoring
 - Enable real-time signaling and develop performance benchmarks for prototype controllers
- Task 9 External Site Deployment and Monitoring
 - will remotely distribute DENNIS[™] controllers and gather performance data
- Task 10 Data Reduction and Economic Analysis
 - Reduce and analyze data from remote sites
- Task 11 Utility Integration and Market Development
 - work to transition technology to DISCO/EMCO entities
- Task 12 Neighborhood Controller Tech. Assessment
 - develop central controller for lager blocks of users

Summary of Progress to Date

- We have completed the Year One program
 - Facility upgrades have been completed.
 - Neural networks and fuzzy logic algorithms development completed!
 - Economic model provides for 15 year payback for PV Systems (6%ROI)
- Option Year One tasks have been initiated
 - External controller site selection is underway.
 - Code translation in progress.
 - Linux based controller production underway.